

Telerilevamento delle Precipitazioni da Satellite

Stefano Dietrich

Istituto di Scienze dell'Atmosfera e del Clima ISAC-CNR, Roma *s.dietrich@isac.cnr.it*

> con il Gruppo di Meteorologia da Satellite dell'ISAC-CNR di Roma: Giulia Panegrossi, Paolo Sanò, Anna Cinzia Marra, Marco Petracca

Sviluppo di algoritmi per la stima di precipitazione da satellite e loro applicazioni in ambito nazionale e internazionale

- a) Sviluppo e ottimizzazione degli algoritmi per applicazioni operative (i.e., EUMETSAT H-SAF, Intesa operativa con il DPC) e per studi scientifici in ambito nazionale ed internazionale:
 - Algoritmi per sensori passivi alle microonde (MW) a bordo di satelliti ad orbita bassa (Low Earth Orbit, LEO):
 - Approccio di tipo fisico, Bayesiano (CDRD) e a Reti Neurali (PNPR) ottimizzati per l'area europea e per l'Africa;
 - Algoritmi multisensore che combinano stime da LEO-MW con misure all'infrarosso (IR) dal satellite geostazionario (GEO) Meteosat (algoritmi PET, RU), e con misure di fulminazione (L-PET), per fornire prodotti di precipitazione ad alta risoluzione spaziale e temporale
- b) Sistema di ricezione dati satellitari DVB-S2, creazione della catena operativa per la produzione in tempo reale dei prodotti di precipitazione, e tool Multisensor Atmospheric data Mapping System (MAMS), per analisi multisensore di eventi estremi tramite la visualizzazione di prodotti satellitari e dati a terra, e delle uscite del modello di previsione Moloch sviluppato all'ISAC (gruppo di Modellistica) [intesa operativa tra ISAC e Dipartimento della Protezione Civile (DPC) (2011-2016)]

Osservazioni di Nubi e Precipitazione da Sensori Satellitari

I sensori satellitari attivi (radar) e passivi (radiometri) vengono impiegati per lo studio dei sistemi precipitanti sul bacino del Mediterraneo e nella fascia tropicale con particolare riguardo all'Africa. Le applicazioni riguardano:

- Nowcasting
- Monitoraggio di eventi estremi
- Climatologia regionale di nubi e precipitazione.

h03 2014/11/05 00:12

Alluvione Catania 5 nov 2014

22 nov 2008

Precipitazione del tifone Hagupit 3-8 dic 2014

EUMETSAT H-SAF PR-OBS-2 Instantaneous Rain Rate from Conical MW Scan EUMETSAT H-SAF PR-OBS-2 Instantaneous Rain Rate from Crit

strack MW Sea

Prodotti di precipitazione nelle microonde per l'idrologia e il nowcasting

Osservazioni di Nubi e Precipitazione da RADAR e Reti di Fulminazione

L'ISAC è attivo nella costruzione di radar meteorologici e "cloud radar" e nel loro utilizzo per lo studio dei processi di formazione delle idrometeore in nube e della precipitazione. Partecipa alla rete di rilevamento dei fulmini LINET.

Radar Polar 55C polarimetrico Roma POLAR 55C - Radar Meteorology Group - ISAC-CNR, Rome, Italy

Cloud radar mobile banda Ka Bologna-Lecce

Radar banda Ku Padova

Consiglio Nazionale delle Ricerche

Osservazioni degli eventi estremi

Il monitoraggio e la previsione degli eventi estremi richiede l'uso delle tecnologie spaziali in aiuto al nowcasting. I radar e i radiometri da satellite e dal suolo ci forniscono un punto di vista privilegiato per:

- la stima della precipitazione (pioggia intensa, grandine e nevicate);
- l'analisi della struttura dinamica e microfisica dei sistemi temporaleschi.

Molti di questi sistemi con manifestazioni intense al suolo sono scarsamente predicibili con i modelli numerici di previsione del tempo e quindi i radar e i sensori satellitari sono preziosi per fornire indicazioni ai Servizi Meteorologici e al Dipartimento della Protezione Civile.

5 settembre 2015. Intensità di precipitazione in mm h-1 dall'algoritmo 183-WSL nelle microonde del sensore satellitare AMSU-B. Il sensore ha "catturato" la forte grandinata in corso sulla città di Napoli.

8 novembre 2011. Ciclone di tipo tropicale (medicane) a ovest di Corsica e Sardegna dal satellite Meteosat.

26 maggio 2003. Modellazione numerica della struttura rotatoria del medicane sul Mediterraneo occidentale. Giallo: aria secca in quota. Rosso: aria umida in salita.

25 ottobre 2011. Alluvione delle Cinque Terre. Intensità di precipitazione in mm h-1 dall'algoritmo CDRD nelle microonde del sensore satellitare SSMIS.

Progetti e Missioni Satellitari Internazionali con Contributo ISAC

METEOSAT Third Generation

Lancio previsto 2018

The EUMETSAT Network of Satellite Application

Facilities

EPS-Second Generation

Gel/ex

A Core Project of the World Climate Research Programme on Global Energy and Water Exchanges

Collaborazioni con:

Support to Operational Hydrology and Water Management

The Context: The SAF Concept

CDOP 3 framework

The Context: The SAF Network

H-SAF - EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF)

Mandate of H-SAF

- to provide satellite-derived products from existing and future satellites with sufficient time and space resolution to satisfy the needs of operational hydrology; identified products:
 - ✓ precipitation (liquid, solid, rate, accumulated);
 - ✓ soil moisture (at large-scale, at local-scale, at surface, in the roots region);
 - ✓ snow parameters (detection, cover, melting conditions, water equivalent);
- to perform independent validation of the usefulness of the new products for fighting against floods, landslides, avalanches, and evaluating water resources; the activity includes:
 - ✓ downscaling/upscaling modelling from observed/retrieved fields to basin level;
 - ✓ fusion of satellite-derived measurements with data from radar and rain gauge networks;
 - ✓ assimilation of satellite-derived products in hydrological models;
 - ✓ assessment of the impact of the new satellite-derived products on hydrological applications.

Generation Chain Architecture

CDRD e PNPR: Approccio generale

Lo sviluppo degli algoritmi CDRD e PNPR avviene nell'ottica di sfruttare i diversi radiometri alle MW a scansione conica e cross-track, con canali sensibili alla precipitazione, a bordo di satelliti LEO orbitanti intorno al pianeta, tenendo conto delle specifiche tecniche di ciascuno di essi, e di ottenere stime di precipitazione istantanea per quanto possibile coerenti tra i differenti sensori. A tale scopo i due algoritmi sono basati sullo stesso fondamento fisico.

Gli algoritmi sono stati inizialmente sviluppati per l'area europea e mediterranea, e poi sono stati estesi all'area osservativa del Meteosat e ottimizzati per la regione africana.

Con il lancio della missione Global Precipitation Measurement (GPM) della NASA/JAXA (27 febbraio 2014), la costellazione dei satelliti con a bordo radiometri alle MW garantisce una globale tri-oraria della copertura precipitazione (più frequente alle medie e alte latitudini). Inoltre il satellite GPM Core Observatory (GPM-CO) (noneliosincrono) con a bordo il più avanzato radiometro a scansione conica. GPM Microwave Imager (GMI), ed il radar in doppia frequenza Ku-Ka (DPR) fornisce misure uniche della struttura 3-D della precipitazione a tutte le latitudini tra 68°N e 68°S. Un nuovo algoritmo globale in sviluppo per il GMI sarà basato sul dataset di coincidenze GMI/DPR della missione GPM.

Esempi del prodotti stima di precipitazione istantanea sul dato orbitale SSMIS (CDRD) e AMSU/MHS (PNPR) sull'area del Meteosat

25 Ottobre 2011 – Alluvione delle Cinque Terre

Mosaico Radar Nazionale (DPC) e CDRD (SSMIS) - 05:50 UTC

Immagine estratta dal tool MAMS sviluppato presso ISAC-CNR

25 Ottobre 2011 – Alluvione delle Cinque Terre

CDRD (SSMIS) + pluviometri + strokes rete LINET – 16:00 UTC

Immagine estratta dal tool MAMS sviluppato presso ISAC-CNR

Precipitazione media giornaliera da radiometri a MW

La disponibilità della costellazione di radiometri a MW consente di poter analizzare l'evoluzione di eventi precipitativi con l'utilizzo passaggi successivi sulla stessa area e di calcolare la precipitazione media (o cumulata) su scala giornaliera o su scale temporali più lunghe (i.e., mensili) (Panegrossi et al., 2015, 2016)

Precipitazione media giornaliera da CDRD e PNPR

Esempio di precipitazione media giornaliera (anno 2014) ottenuta dalle stime di precipitazione istantanea CDRD e PNPR da tutti i passaggi DMSP SSMIS, MetOP e NOAA AMSU/MHS

Anno 2014

Risoluzione spaziale $0.25^{\circ} \times 0.25^{\circ}$

Studio sul Mediterraneo: Alluvione di Genova 9-11 October 2014

Pioggia cumulata da pluviometri tra il 9 e l'11 ottobre 2014 sull'area di Genova

Evoluzione temporale della precipitazione sull'area evidenziata dal box bianco nel pannello a sinistra: confronto tra le misure pluviometriche (DPC), stime radar (ARPA Piemonte), e stime CDRD e PNPR di precipitazione istantanea e cumulata

(Panegrossi et al., 2016 DOI: 10.1109/JSTARS.2016.2520660)

Flash Flood Catania5 Novembre 2014: applicazione prodotto combinato MW/IR RU

RU MW/IR 2014/11/05 00:12

Esempio di prodotto di precipitazione ottenuto con tecnica di blending MW/IR Rapid Update disponibile in tempo reale sul tool MAMS sviluppato presso ISAC-CNR.

I risultati di tecniche di blending (o similari) dipendono criticamente dalla disponibilità di passaggi frequenti dei satelliti LEO sugli eventi osservati e dalla accuratezza e consistenza delle stime dai radiometri a MW

Multisensor Atmospheric data Mapping System (MAMS)

La piattaforma è stata sviluppata presso il CNR-ISAC di Roma al fine di facilitare le analisi multi sensore di eventi estremi (Petracca et al., 2013).

Gli obbiettivi raggiunti sono:

- Disporre di tutte le informazioni necessarie su una sola piattaforma.
- Disporre di uno strumento per archiviare ed elaborare dati ottenuti da vari radiometri.
- Avere la possibilità di confrontare misure strumentali con dati ottenuti da modelli previsionali e algoritmi di stima di parametri meteorologici.
- Avere la possibilità di confrontare dati a diverse risoluzioni spaziali e temporali e combinare differenti sorgenti di informazione.
- Essere in grado di geolocare diverse tipologie di dati sulla piattaforma Google maps.

Catena di ricezione/elaborazione

- ✓ Ricezione del flusso dati multicanale
- ✓ Procedura di identificazione (Eumetsat PID) dei prodotti
- ✓ Procedura di analisi degli errori di trasmissione
- ✓ Decodifica dei dati ricevuti (rimozione della crittografia)

 ✓ Indicizzazione dei dati da elaborare (procedura basata sulle tempistiche di ricezione)

- ✓ Decompressione dei dati
- ✓ Selezione dell'area goegrafica di interesse
- ✓ Creazione dei formati di ingresso agli algoritmi
- Applicazione degli algoritmi

Server di archivio

Server di elaborazione

- ✓ Archiviazioni dei dati satellitari
- \checkmark Archiviazione prodotti derivati
- ✓ Aggiornamento del sistema MAMS

Multisensor Atmospheric data Mapping System (MAMS)

Multisensor Atmospheric data Mapping System

Esempio di funzionamento

Menù principale

Multisensor Atmospheric data Mapping System (MAMS)

Multisensor Atmospheric data Mapping System (MAMS)

4 novembre 2011 – Alluvione di Genova

CDRD (SSMIS) + pluviometri + fulmini rete LINET – 08:50 UTC

Immagine estratta dal tool MAMS sviluppato presso ISAC-CNR

Algoritmo di Nowcasting delle celle convettive intense

in fase di Test e Validazione su piattaforma MAMS!

(*) 24h Validazione rispetto ai dati di fulminazione LINET: POD 73% <anticipo temp.>≈30' FAR 33%

(*senza l'informazione sulla tendenza temporale!) (modulo di Post-processing) <u>Ci si aspetta un miglioramento</u> <u>delle performance con l'utilizzo</u> <u>delle informazioni complete!</u>

Esempio di uscita grafica su Google Earth. Celle convettive individuate e proiezione fino ad 1 ora

Applicazione su caso studio I: Napoli 5/9/15

MAMS:

sovrapposizione previsione e osservazione

5 settembre 2015 06:15 UTC

MAMS: monitoraggio

5 settembre 2015 06:45 UTC

Studio dei canali MSG estrapolati dalla traiettoria dell'evento

34

Evento di Napoli: 5 settembre 2015

Evento di Napoli: 5 settembre 2015

Primi fulmini osservati: tra le 06:10 e le 06:20 UTC (cella convettiva individuata 15' prima dell'inizio delle scariche elettriche!)

Evento di Napoli: 5 settembre 2015

Evento di Napoli: 5 settembre 2015

MAMS: monitoraggio

5 novembre 2014 06:15 UTC

Celle convettive individuate alle ore <u>05:00</u>, 05:05 e 05:10 UTC. e fulmini osservati tra le 05:30 e le 06:00 UTC. I primi fulmini sono stati individuati dopo le ore <u>05:34</u> UTC (oltre 30' dopo la detection delle celle convettive!)

Grazie dell'attenzione